Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Am J Bot ; 111(4): e16309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584339

ABSTRACT

PREMISE: Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS: We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS: All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS: Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.


Subject(s)
Flowers , Hybridization, Genetic , Opuntia , Pollination , Reproductive Isolation , Seeds , Self-Incompatibility in Flowering Plants , Sympatry , Self-Incompatibility in Flowering Plants/physiology , Flowers/physiology , Seeds/physiology , Opuntia/physiology , Reproduction , Pollen/physiology , Species Specificity , Apomixis/physiology
2.
Plant Physiol ; 183(3): 1391-1404, 2020 07.
Article in English | MEDLINE | ID: mdl-32321844

ABSTRACT

Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.


Subject(s)
Papaver/physiology , Plant Proteins/metabolism , Pollen/physiology , Self-Incompatibility in Flowering Plants/physiology , Actins/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Cytoskeletal Proteins/metabolism , Hydrogen Peroxide/toxicity , Inorganic Pyrophosphatase/metabolism , Nitrosation , Oxidation-Reduction , Papaver/drug effects , Peptide Hydrolases/metabolism , Peptides/metabolism , Plant Proteins/chemistry , Pollen/drug effects , Pollen Tube/drug effects , Pollen Tube/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational/drug effects , Self-Incompatibility in Flowering Plants/drug effects , Solubility
3.
Int J Mol Sci ; 21(6)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183315

ABSTRACT

Camellia oleifera is a valuable woody oil plant belonging to the Theaceae, Camellia oil extracted from the seed is an excellent edible oil source. Self-incompatibility (SI) in C. oleifera results in low fruit set, and our knowledge about the mechanism remains limited. In the present study, the Tandem mass tag (TMT) based quantitative proteomics was employed to analyze the dynamic change of proteins response to self- and cross-pollinated in C. oleifera. A total of 6,616 quantified proteins were detected, and differentially abundant proteins (DAPs) analysis identified a large number of proteins. Combined analysis of differentially expressed genes (DEGs) and DAPs of self- and cross-pollinated pistils based on transcriptome and proteome data revealed that several candidate genes or proteins involved in SI of C. oleifera, including polygalacturonase inhibitor, UDP-glycosyltransferase 92A1-like, beta-D-galactosidase, S-adenosylmethionine synthetase, xyloglucan endotransglucosylase/hydrolase, ABC transporter G family member 36-like, and flavonol synthase. Venn diagram analysis identified 11 proteins that may participate in pollen tube growth in C. oleifera. Our data also revealed that the abundance of proteins related to peroxisome was altered in responses to SI in C. oleifera. Moreover, the pathway of lipid metabolism-related, flavonoid biosynthesis and splicesome were reduced in self-pollinated pistils by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In summary, the results of the present study lay the foundation for learning the regulatory mechanism underlying SI responses as well as provides valuable protein resources for the construction of self-compatibility C. oleifera through genetic engineering in the future.


Subject(s)
Camellia/metabolism , Plant Proteins/analysis , Proteome/genetics , Self-Incompatibility in Flowering Plants/genetics , Transcriptome/genetics , Camellia/genetics , Flavonoids/biosynthesis , Flowers/metabolism , Lipid Metabolism/genetics , Plant Proteins/genetics , Pollen Tube/growth & development , Pollination/physiology , Proteome/analysis , Proteomics , Self-Incompatibility in Flowering Plants/physiology , Spliceosomes/genetics , Tandem Mass Spectrometry
4.
New Phytol ; 224(3): 1035-1047, 2019 11.
Article in English | MEDLINE | ID: mdl-31505037

ABSTRACT

Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (1) the two-way interaction between introgression and the evolution of reproductive systems, and (2) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.


Subject(s)
Gene Flow , Hybridization, Genetic , Plants/genetics , Alleles , Computer Simulation , Crosses, Genetic , Models, Biological , Reproduction/genetics , Reproductive Isolation , Self-Incompatibility in Flowering Plants/physiology
5.
Int J Mol Sci ; 20(13)2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31284391

ABSTRACT

Self-incompatibility (SI) is a widespread mechanism in angiosperms that prevents inbreeding by rejecting self-pollen. However, the regulation of the SI response in Brassica napus is not well understood. Here, we report that the M-locus protein kinase (MLPK) BnaMLPKs, the functional homolog of BrMLPKs in Brassica rapa, controls SI in B. napus. We identified four paralogue MLPK genes in B. napus, including BnaA3.MLPK, BnaC3.MLPK, BnaA4.MLPK, and BnaC4.MLPK. Two transcripts of BnaA3.MLPK, BnaA3.MLPKf1 and BnaA3.MLPKf2, were generated by alternative splicing. Tissue expression pattern analysis demonstrated that BnaA3.MLPK, especially BnaA3.MLPKf2, is highly expressed in reproductive organs, particularly in stigmas. We subsequently created RNA-silencing lines and CRISPR/Cas9-induced quadruple mutants of BnaMLPKs in B. napus SI line S-70. Phenotypic analysis revealed that SI response is partially suppressed in RNA-silencing lines and is completely blocked in quadruple mutants. These results indicate the importance of BnaMLPKs in regulating the SI response of B. napus. We found that the expression of SI positive regulators S-locus receptor kinase (SRK) and Arm-Repeat Containing 1 (ARC1) are suppressed in bnmlpk mutant, whereas the self-compatibility (SC) element Glyoxalase I (GLO1) maintained a high expression level. Overall, our findings reveal a new regulatory mechanism of MLPK in the SI of B. napus.


Subject(s)
Brassica napus/enzymology , Brassica napus/physiology , Protein Kinase C/metabolism , Self-Incompatibility in Flowering Plants/physiology , Amino Acid Sequence , Base Sequence , Brassica napus/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Gene Expression Regulation, Plant , Mutation/genetics , Organ Specificity/genetics , Phylogeny , Plants, Genetically Modified , Pollination , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinase C/chemistry , Protein Kinase C/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
J Exp Bot ; 70(11): 3007-3019, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31152173

ABSTRACT

Plant domestication is the process of adapting plants to human use by selecting specific traits. The selection process often involves the modification of some components of the plant reproductive mechanisms. Allelic variants of genes associated with flowering time, vernalization, and the circadian clock are responsible for the adaptation of crops, such as rice, maize, barley, wheat, and tomato, to non-native latitudes. Modifications in the plant architecture and branching have been selected for higher yields and easier harvests. These phenotypes are often produced by alterations in the regulation of the transition of shoot apical meristems to inflorescences, and then to floral meristems. Floral homeotic mutants are responsible for popular double-flower phenotypes in Japanese cherries, roses, camellias, and lilies. The rise of peloric flowers in ornamentals such as snapdragon and florists' gloxinia is associated with non-functional alleles that control the relative expansion of lateral and ventral petals. Mechanisms to force outcrossing such as self-incompatibility have been removed in some tree crops cultivars such as almonds and peaches. In this review, we revisit some of these important concepts from the plant domestication perspective, focusing on four topics related to the pre-fertilization mechanisms: flowering time, inflorescence architecture, flower development, and pre-fertilization self-incompatibility mechanisms.


Subject(s)
Crops, Agricultural/genetics , Domestication , Flowers/growth & development , Inflorescence/anatomy & histology , Self-Incompatibility in Flowering Plants/physiology , Crops, Agricultural/physiology , Fertilization
7.
New Phytol ; 224(3): 1330-1338, 2019 11.
Article in English | MEDLINE | ID: mdl-31131900

ABSTRACT

The extent to which inbreeding depression can be purged is a major determinant of mating system evolution and is important to conservation and crop improvement. Studies of inbreeding depression purging have not been conducted in self-incompatible plants before. An experimental ('ancestral') treatment was first created from self-incompatible plants of Leavenworthia alabamica. Lines derived from this population were maintained by self-pollination for three generations in the attempt to create a 'purged' population with fewer recessive, deleterious mutations of large effect. Fitness components and the frequency of malformed phenotypes were monitored in progeny derived from selfing and outcrossing in the ancestral and purged treatments. Fitness component means and inbreeding depression were largely unchanged by three generations of forced self-pollination, and there was no reduction in the frequency of plants exhibiting malformed phenotypes. Our findings indicate that inbreeding depression in this species is largely a result of mutations of mild effect, consistent with the observation that self-incompatibility is maintained in most populations of L. alabamica, despite the presence of genetic variants with weaker self-incompatibility. Moreover, although population theory suggests that deleterious mutations of large effect should be sheltered from selection in the region of self-incompatibility locus, our results do not support this prediction.


Subject(s)
Brassicaceae/physiology , Inbreeding Depression , Self-Incompatibility in Flowering Plants/physiology , Analysis of Variance , Phenotype , Pollination/physiology
8.
Int J Mol Sci ; 20(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626063

ABSTRACT

Self-incompatibility (SI) is a complex process, one out of several mechanisms that prevent plants from self-fertilizing to maintain and increase the genetic variability. This process leads to the rejection of the male gametophyte and requires the co-participation of numerous molecules. Plants have evolved two distinct SI systems, the sporophytic (SSI) and the gametophytic (GSI) systems. The two SI systems are markedly characterized by different genes and proteins and each single system can also be divided into distinct subgroups; whatever the mechanism, the purpose is the same, i.e., to prevent self-fertilization. In Malinae, a subtribe in the Rosaceae family, i.e., Pyrus communis and Malus domestica, the GSI requires the production of female determinants, known as S-RNases, which penetrate the pollen tube to interact with the male determinants. Beyond this, the penetration of S-RNase into the pollen tube triggers a series of responses involving membrane proteins, such as phospholipases, intracellular variations of cytoplasmic Ca2+, production of reactive oxygen species (ROS) and altered enzymatic activities, such as that of transglutaminase (TGase). TGases are widespread enzymes that catalyze the post-translational conjugation of polyamines (PAs) to different protein targets and/or the cross-linking of substrate proteins leading to the formation of cross-linked products with high molecular mass. When actin and tubulin are the substrates, this destabilizes the cytoskeleton and inhibits the pollen-tube's growth process. In this review, we will summarize the current knowledge of the relationship between S-RNase penetration, TGase activity and cytoskeleton function during GSI in the Malinae.


Subject(s)
Cytoskeleton/metabolism , Germ Cells, Plant/physiology , Rosaceae/metabolism , Self-Incompatibility in Flowering Plants/physiology , Transglutaminases/metabolism , Pollen Tube/growth & development
9.
J Math Biol ; 78(6): 1841-1874, 2019 05.
Article in English | MEDLINE | ID: mdl-30683998

ABSTRACT

In this paper, the extinction problem for a class of distylous plant populations is considered within the framework of certain nonhomogeneous nearest-neighbor random walks in the positive quadrant. For the latter, extinction means absorption at one of the axes. Despite connections with some classical probabilistic models (standard two-type Galton-Watson process, two-urn model), exact formulae for the probabilities of absorption seem to be difficult to come by and one must therefore resort to good approximations. In order to meet this task, we develop potential-theoretic tools and provide various sub- and super-harmonic functions which, for large initial populations, provide bounds which in particular improve those that have appeared earlier in the literature.


Subject(s)
Extinction, Biological , Models, Biological , Pollen/genetics , Pollination/physiology , Self-Incompatibility in Flowering Plants/physiology , Diploidy , Markov Chains
10.
J Exp Bot ; 70(7): 2113-2123, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30481323

ABSTRACT

Self-incompatibility (SI) is a genetically controlled mechanism that prevents self-fertilization and thus encourages outbreeding and genetic diversity. During pollination, most SI systems utilize cell-cell recognition to reject incompatible pollen. Mechanistically, one of the best-studied SI systems is that of Papaver rhoeas (poppy), which involves the interaction between the two S-determinants, a stigma-expressed secreted protein (PrsS) and a pollen-expressed plasma membrane-localized protein (PrpS). This interaction is the critical step in determining acceptance of compatible pollen or rejection of incompatible pollen. Cognate PrpS-PrsS interaction triggers a signalling network causing rapid growth arrest and eventually programmed cell death (PCD) in incompatible pollen. In this review, we provide an overview of recent advances in our understanding of the major components involved in the SI-induced PCD (SI-PCD). In particular, we focus on the importance of SI-induced intracellular acidification and consequences for protein function, and the regulation of soluble inorganic pyrophosphatase (Pr-p26.1) activity by post-translational modification. We also discuss attempts to identify protease(s) involved in the SI-PCD process. Finally, we outline future opportunities made possible by the functional transfer of the P. rhoeas SI system to Arabidopsis.


Subject(s)
Apoptosis , Papaver/physiology , Pollen/physiology , Self-Incompatibility in Flowering Plants/physiology , Arabidopsis/physiology , Environment , Hydrogen-Ion Concentration , Plants, Genetically Modified/physiology
11.
Plant Cell ; 30(12): 2959-2972, 2018 12.
Article in English | MEDLINE | ID: mdl-30377238

ABSTRACT

Self-incompatibility (SI) in Petunia is regulated by a polymorphic S-locus. For each S-haplotype, the S-locus contains a pistil-specific S-RNase gene and multiple pollen-specific S-locus F-box (SLF) genes. Both gain-of-function and loss-of-function experiments have shown that S-RNase alone regulates pistil specificity in SI. Gain-of-function experiments on SLF genes suggest that the entire suite of encoded proteins constitute the pollen specificity determinant. However, clear-cut loss-of-function experiments must be performed to determine if SLF proteins are essential for SI of pollen. Here, we used CRISPR/Cas9 to generate two frame-shift indel alleles of S2 -SLF1 (SLF1 of S2 -haplotype) in S2S3 plants of P. inflata and examined the effect on the SI behavior of S2 pollen. In the absence of a functional S2-SLF1, S2 pollen was either rejected by or remained compatible with pistils carrying one of eight normally compatible S-haplotypes. All results are consistent with interaction relationships between the 17 SLF proteins of S2 -haplotype and these eight S-RNases that had been determined by gain-of-function experiments performed previously or in this work. Our loss-of-function results provide definitive evidence that SLF proteins are solely responsible for SI of pollen, and they reveal their diverse and complex interaction relationships with S-RNases to maintain SI while ensuring cross-compatibility.


Subject(s)
F-Box Proteins/metabolism , Petunia/metabolism , Petunia/physiology , Pollen/metabolism , Pollen/physiology , Self-Incompatibility in Flowering Plants/physiology , F-Box Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Petunia/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/physiology , Pollen/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Self-Incompatibility in Flowering Plants/genetics
12.
J Plant Res ; 131(4): 633-640, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29500748

ABSTRACT

Pollination ecology and breeding system of Lilium pomponium L. were studied, and their effect on the reproductive outcome was assessed. This species has high conservation interest in Europe, because it is included in Annex V of the EU Habitat Directive and it is one out of the five Lilium species listed in IUCN Global Red List. To achieve our aim, the pollen vectors as well as the effect of bagging, emasculation and artificial pollination on reproductive output were studied. The most frequent visitor was the Lepidopteran Gonepteryx rhamnii. In general, reproductive outputs were close to zero for all the self-pollination treatments; however, geitonogamy and facilitated selfing seem slightly more efficient than autogamy, as also confirmed by self-compatibility and autofertility indices. Altogether, our results suggest a self-incompatible outcrossing breeding system, with a poor capacity for selfing. Nevertheless, climate change and anthropic threats might promote a shift toward self-fertilization, even maladaptive, favouring the few individuals able to produce selfed seeds.


Subject(s)
Lilium/physiology , Animals , Butterflies , Ecology , Endangered Species , France , Insecta , Italy , Pollination/physiology , Reproduction/physiology , Self-Incompatibility in Flowering Plants/physiology
13.
Plant Biol (Stuttg) ; 20(2): 199-204, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29215802

ABSTRACT

Self-fertilisation that is delayed until after opportunities for outcrossing have ceased has been argued to provide both the reproductive assurance benefits of selfing and the genetic advantages of outcrossing. In the Campanulaceae, presentation of pollen on stylar hairs and progressive stigma curvature have been hypothesised to facilitate delayed selfing, but experimental tests are lacking. Stigma curvature is common in Campanula, a genus largely characterised by self-incompatibility, and therefore is unlikely to have initially evolved to promote self-fertilisation. In derived self-compatible species, however, stigma curvature might serve the secondary function of delayed selfing. We investigated delayed selfing in Triodanis perfoliata, a self-compatible relative of Campanula. Using floral manipulation experiments and pollen tube observations, we quantified the extent and timing of self-pollination. Further, we hypothesised that, if stigma curvature provides the benefit of delayed selfing in Triodanis, selection should have favoured retention of self-pollen through the loss of a stylar hair retraction mechanism. Results of a stigma removal experiment indicated that autonomous selfing produces partial seed set, but only some selfing was delayed. Pollen tube observations and a flower senescence assay also supported the finding of partial delayed selfing. Scanning electron microscopy revealed that pollen-collecting hairs retract during anthesis, which may limit the extent of delayed selfing. Delayed selfing appeared to be only partially effective in T. perfoliata. The stylar hair retraction in this species would seem to contradict selection for selfing. We suggest that caution and rigour are needed in interpreting floral traits as adaptive mechanisms for delayed selfing.


Subject(s)
Campanulaceae/physiology , Flowers/physiology , Pollination , Self-Fertilization , Campanulaceae/anatomy & histology , Campanulaceae/ultrastructure , Flowers/anatomy & histology , Flowers/ultrastructure , Microscopy, Electron, Scanning , Pollination/physiology , Self-Fertilization/physiology , Self-Incompatibility in Flowering Plants/physiology
14.
Plant Biol (Stuttg) ; 20(2): 191-198, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29106780

ABSTRACT

One of the key environmental factors affecting plant reproductive systems is temperature. Characterising such effects is especially relevant for some commercially important genera such as Citrus. In this genus, failure of fertilisation results in parthenocarpic fruit development and seedlessness, which is a much-prized character. Here, we characterise the effects of temperature on flower and ovary development, and on pollen-pistil interactions in 'Comune' clementine (Citrus clementina Hort. ex Tan.). We examine flower bud development, in vitro pollen germination and pollen-pistil interaction at different temperatures (15, 20, 25 or 30 °C). These temperatures span the range from 'cold' to 'hot' weather during the flowering season in many citrus-growing regions. Temperature had a strong effect on flower and ovary development, pollen germination, and pollen tube growth kinetics. In particular, parthenocarpic fruit development (indicated by juice vesicle growth) was initiated early if flowers were exposed to warmer temperatures during anthesis. Exposure to different temperatures during flower bud development also alters expression of the self-incompatibility reaction. This affects the point in the pistil at which pollen tube growth is arrested and confirms the role of sub- and supra-optimal temperatures in determining the numbers of pollen tubes reaching the ovary.


Subject(s)
Citrus/physiology , Flowers/growth & development , Fruit/growth & development , Pollen/growth & development , Self-Incompatibility in Flowering Plants/physiology , Citrus/growth & development , Flowers/physiology , Fruit/physiology , Pollen/physiology , Pollen Tube/growth & development , Pollen Tube/physiology , Temperature
15.
Plant Cell Rep ; 36(11): 1785-1799, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28887590

ABSTRACT

KEY MESSAGE: Candidate genes were identified and the role of phytohormones such as JA-Me and ABA in the synthesis of S-RNase was emphasized in pear self-incompatibility. Self-incompatibility (SI) occurs widely in flowering plants as an intraspecific reproductive barrier. This phenomenon promotes variation within species, but for some species such as Pyrus, SI is a nuisance rather than a benefit in agricultural production. Although many studies have been conducted on SI in pears, its mechanism remains unclear. In this study, high-throughput Illumina RNA sequencing (RNA-seq) was used to identify SI-related genes in pear styles. Using transcriptome comparisons, differentially expressed genes of unpollinated (UP), cross-pollinated (CP), and self-pollinated (SP) styles were identified after 48 h. A total of 1796 and 1890 genes were identified in DSC (UP vs. CP) and DSI (UP vs. SP), respectively. KEGG analysis revealed that genes involved in the "plant hormone signal transduction pathway" and "plant-pathogen interaction pathway" were significantly enriched in DSI (UP vs. SP) compared to those in DSC (UP vs. CP). The expression level of S-glycoprotein ribonuclease (S-RNase) was dramatically reduced in cross-pollinated (CP) styles. To better understand the relationship between the expression patterns of S-RNase and two major KEGG pathways, the concentrations of phytohormones were measured, and the expression pattern of S-RNase was analysed using qRT-PCR. Our results demonstrate that methyl jasmonate and abscisic acid may enhance the expression level of S-RNase, and pollination can affect the synthesis of methyl jasmonate and abscisic acid in pear styles. Overall, this study is a global transcriptome analysis of SI in pear. A relationship between self-rejection, plant hormones, and pathogen defence was shown in pear.


Subject(s)
Plant Growth Regulators/metabolism , Transcriptome/genetics , Acetates/pharmacology , Cyclopentanes/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oxylipins/pharmacology , Pollination/drug effects , Pollination/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Self-Incompatibility in Flowering Plants/genetics , Self-Incompatibility in Flowering Plants/physiology
16.
Plant Physiol ; 174(2): 1226-1237, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28385731

ABSTRACT

Mitogen-activated protein kinases (MAPKs) form important signaling modules for a variety of cellular responses in eukaryotic cells. In plants, MAPKs play key roles in growth and development as well as in immunity/stress responses. Pollen-pistil interactions are critical early events regulating pollination and fertilization and involve many signaling events. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants and also is known to utilize signaling to achieve incompatible pollen rejection. Although several pollen-expressed MAPKs exist, very little is known about their function. We previously identified a pollen-expressed MAPK (p56) from Papaver rhoeas that was rapidly activated during SI; several studies implicated its role in signaling to SI-induced programmed cell death involving a DEVDase. However, to date, the identity of the MAPK involved has been unknown. Here, we have identified and cloned a pollen-expressed P. rhoeas threonine-aspartate-tyrosine (TDY) MAPK, PrMPK9-1 Rather few data relating to the function of TDY MAPKs in plants currently exist. We provide evidence that PrMPK9-1 has a cell type-specific function, with a distinct role from AtMPK9 To our knowledge, this is the first study implicating a function for a TDY MAPK in pollen. We show that PrMPK9-1 corresponds to p56 and demonstrate that it is functionally involved in mediating SI in P. rhoeas pollen: PrMPK9-1 is a key regulator for SI in pollen and acts upstream of programmed cell death involving actin and activation of a DEVDase. Our study provides an important advance in elucidating functional roles for this class of MAPKs.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Papaver/enzymology , Papaver/physiology , Plant Proteins/metabolism , Self-Incompatibility in Flowering Plants/physiology , Apoptosis/drug effects , Arabidopsis/enzymology , Caspase 3/metabolism , Cytosol/metabolism , Gene Expression Regulation, Plant/drug effects , Oligonucleotides, Antisense/pharmacology , Peptide Hydrolases/metabolism , Phosphoproteins/metabolism , Pollen Tube/drug effects , Pollen Tube/growth & development , Protein Transport/drug effects , Self-Incompatibility in Flowering Plants/drug effects
17.
Ann Bot ; 119(1): 167-176, 2017 01.
Article in English | MEDLINE | ID: mdl-28062510

ABSTRACT

BACKGROUND AND AIMS: Plasticity of floral traits in response to pollination can enable plants to maximize opportunities for pollen import and export under poor pollination conditions, while minimizing costs under favourable ones. Both floral longevity and display are key traits influencing pollination. While pollination-induced flower wilting is widely documented, we lack an understanding of the multifactorial complexity of this response, including the influence of other pollination components, costs of extended longevity and subsequent impacts on floral display. METHODS: Plasticity of floral longevity was experimentally evaluated in Sabatia angularis in response to multiple pollination factors: pollen addition, removal, and source (self, single-donor outcross, multiple-donor outcross) and timing of pollination. Effects of pollen quantity were further evaluated by exploiting variation in autonomous self-pollen deposition. Delayed pollination costs were tested comparing seed set from early versus late pollinations. Finally, I compared floral display metrics (peak floral display, time to peak flower, flowering duration, mean flowering rate) between experimentally pollinated and control plants. KEY RESULTS: Floral longevity was highly plastic in response to pollen addition and its timing, and the response was dose-dependent but insensitive to pollen source. Pollen removal tended to extend floral longevity, but only insofar as it precluded pollination-induced wilting via autonomous self-pollination. Under delayed pollination, the wilting response was faster and no cost was detected. Pollination further led to reduced peak floral displays and condensed flowering periods. CONCLUSIONS: Floral longevity and display plasticity could optimize fitness in S. angularis, a species prone to pollen limitation and high inbreeding depression. Under pollinator scarcity, extended floral longevities offer greater opportunities for pollen receipt and export at no cost to seed set, reproductive assurance via autonomous self-pollination and larger, more attractive floral displays. Under high pollinator availability, shortened longevities lead to smaller displays that should lower the risk of geitonogamy.


Subject(s)
Flowers/physiology , Gentianaceae/physiology , Pollination/physiology , Crosses, Genetic , Flowers/anatomy & histology , Gentianaceae/anatomy & histology , Self-Incompatibility in Flowering Plants/physiology , Time Factors
18.
Ann Bot ; 119(1): 177-190, 2017 01.
Article in English | MEDLINE | ID: mdl-27941096

ABSTRACT

BACKGROUND AND AIMS: Many hermaphroditic plants avoid self-fertilization by means of a molecular self-incompatibility (SI) system, a complex trait that is difficult to evolve but relatively easy to lose. Loss of SI is a prerequisite for an evolutionary transition from obligate outcrossing to self-fertilization, which may bring about rapid changes in the genetic diversity and structure of populations. Loss of SI is also often followed by the evolution of a 'selfing syndrome', with plants having small flowers, little nectar and few pollen grains per ovule. Here, we document the loss of SI in the long-lived Spanish toadflax Linaria cavanillesii, which has led to mixed mating rather than a transition to a high rate of selfing and in which an outcrossing syndrome has been maintained. METHODS: We performed crosses within and among six populations of L. cavanillesii in the glasshouse, measured floral traits in a common-garden experiment, performed a pollen-limitation experiment in the field and conducted population genetic analyses using microsatellites markers. KEY RESULTS: Controlled crosses revealed variation in SI from fully SI through intermediate SI to fully self-compatible (SC). Flowers of SC individuals showed no evidence of a selfing syndrome. Although the SC population of L. cavanillesii had lower within-population genetic diversity than SI populations, as expected, population differentiation among all populations was extreme and represents an FST outlier in the distribution for both selfing and outcrossing species of flowering plants. CONCLUSIONS: Together, our results suggest that the transition to SC in L. cavanillesii has probably been very recent, and may have been aided by selection during or following a colonization bottleneck rather than in the absence of pollinators. We find little indication that the transition to SC has been driven by selection for reproductive assurance under conditions currently prevailing in natural populations.


Subject(s)
Linaria/physiology , Pollination/physiology , Self-Incompatibility in Flowering Plants/physiology , Crosses, Genetic , Fruit/physiology , Genetic Variation , Linaria/genetics , Reproduction/physiology , Seeds/physiology , Spain
19.
Sci Rep ; 6: 33785, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27650318

ABSTRACT

The mating system transition in polyploid Brassica napus (AACC) from out-crossing to selfing is a typical trait to differentiate it from their diploid progenitors. Elucidating the mechanism of mating system transition has profound consequences for understanding the speciation and evolution in B. napus. Functional complementation experiment has shown that the insertion of 3.6 kb into the promoter of self-incompatibility male determining gene, BnSP11-1 leads to its loss of function in B. napus. The inserted fragment was found to be a non-autonomous Helitron transposon. Further analysis showed that the inserted 3.6 kb non-autonomous Helitron transposon was widely distributed in B. napus accessions which contain the S haplotype BnS-1. Through promoter deletion analysis, an enhancer and a putative cis-regulatory element (TTCTA) that were required for spatio-temporal specific expression of BnSP11-1 were identified, and both might be disrupted by the insertion of Helitron transposon. We suggested that the insertion of Helitron transposons in the promoter of BnSP11-1 gene had altered the mating system and might facilitated the speciation of B. napus. Our findings have profound consequences for understanding the self-compatibility in B. napus as well as for the trait variations during evolutionary process of plant polyploidization.


Subject(s)
Brassica napus , DNA Transposable Elements/physiology , Gene Expression Regulation, Plant/physiology , Polyploidy , Self-Incompatibility in Flowering Plants/physiology , Brassica napus/genetics , Brassica napus/metabolism
20.
Plant J ; 87(6): 606-16, 2016 09.
Article in English | MEDLINE | ID: mdl-27233616

ABSTRACT

The collaborative non-self-recognition model for S-RNase-based self-incompatibility predicts that multiple S-locus F-box proteins (SLFs) produced by pollen of a given S-haplotype collectively mediate ubiquitination and degradation of all non-self S-RNases, but not self S-RNases, in the pollen tube, thereby resulting in cross-compatible pollination but self-incompatible pollination. We had previously used pollen extracts containing GFP-fused S2 -SLF1 (SLF1 with an S2 -haplotype) of Petunia inflata for co-immunoprecipitation (Co-IP) and mass spectrometry (MS), and identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (a conventional Rbx1) as components of the SCF(S) (2-) (SLF) (1) complex. Using pollen extracts containing PiSSK1:FLAG:GFP for Co-IP/MS, we identified two additional SLFs (SLF4 and SLF13) that were assembled into SCF(SLF) complexes. As 17 SLF genes (SLF1 to SLF17) have been identified in S2 and S3 pollen, here we examined whether all 17 SLFs are assembled into similar complexes and, if so, whether these complexes are unique to SLFs. We modified the previous Co-IP/MS procedure, including the addition of style extracts from four different S-genotypes to pollen extracts containing PiSSK1:FLAG:GFP, to perform four separate experiments. The results taken together show that all 17 SLFs and an SLF-like protein, SLFLike1 (encoded by an S-locus-linked gene), co-immunoprecipitated with PiSSK1:FLAG:GFP. Moreover, of the 179 other F-box proteins predicted by S2 and S3 pollen transcriptomes, only a pair with 94.9% identity and another pair with 99.7% identity co-immunoprecipitated with PiSSK1:FLAG:GFP. These results suggest that SCF(SLF) complexes have evolved specifically to function in self-incompatibility.


Subject(s)
F-Box Proteins/metabolism , Petunia/genetics , Plant Proteins/metabolism , Self-Incompatibility in Flowering Plants/physiology , F-Box Proteins/genetics , Green Fluorescent Proteins/genetics , Haplotypes , Immunoprecipitation , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Petunia/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...